Lesson on Force

This lesson package includes a lesson plan, classwork/homework assignments, and a rubric and answers for the homework.

Activity	5E – Engage, Explore, Explain, Elaborate, Evaluate PRO – Principles, Reasoning, Outcome	Modes of representation
Lesson 1 (60 min) Task 1– Prediction activity before the demonstration (refer to Classwork 1)	Engage students in predicting what would happen in given scenarios – what they think they would observe (O) and why they think this would be the case (attempting P & R) through Think, Pair, Write, Share	Verbal (if discussion is encouraged) Written
Live demonstration of the scenarios Equipment needed: 2 skateboards with 2 safety helmets; spring balances for pairs of students	Students explore the scenario through hands-on (with the spring balances) or through watching/experience live demo	Visual (e.g readings on spring balances) Physical
Task 2 – Individually, students draw what they have observed and explain their observation (refer to Classwork 1)	Students draw what they observed (O) and provide an explanation (attempting P & R)	Visual (diagram) Written
Task 3- In groups, students compare their written explanations, guided by the textbook and the teacher	Textbook/teacher provides the necessary vocabulary and concepts to help students refine their explanation	Verbal Visual (textbook)
Class discussion	Teacher introduces Newton's Third Law of Motion and corrects all layman terms (push, pull, faster/slower) to scientific terms (action, reaction, higher/lower acceleration)	Verbal Visual (if terms are written on the whiteboard)
Task 4- Individually, students attempt to refine their diagram and	Students refine their diagrams (O) and explanations (P & R)	Visual Written

Activity	5E – Engage, Explore, Explain, Elaborate, Evaluate PRO – Principles, Reasoning, Outcome	Modes of representation
their explanation (third column in Classwork 1)		
Lesson 2 (60 mins)		
Task 1– Prediction activity before the demonstration (refer to Classwork 2)	Engage students in predicting what would happen in given scenarios – what they think they would observe (O) and why they think this would be the case (attempting P & R) through Think, Pair, Write, Share	Verbal (if discussion is encouraged) Written
Live demonstration of the scenarios Equipment needed: 2 skateboards with 2 safety helmets	Students explore the scenario through watching/experience live demo	Visual (watching the demo) Physical (for those in the live demo)
Task 2 – Individually, students draw what they have observed and explain their observation (refer to Classwork 2),	Students draw what they observed (O) and provide explanation (attempting P & R)	Visual (diagram) Written based on diagram
Task 3- In groups, students compare their written explanations, guided by the textbook and the teacher	Textbook/teacher provides the necessary vocabulary and concepts to help students refine their explanation	Verbal Visual (textbook)
Class discussion	Teacher introduces Newton's Second Law of Motion and correct all layman terms (heavy, light) to scientific terms (higher mass, lower mass)	Verbal Visual (if terms are put on the whiteboard)
Task 4 - Instruct students to circle the correct "faster / slower" phenomena (Question 2 in Classwork 2)	Use teacher modelling to get students to notice how mass and force affect acceleration (P). Students refine their observation (O)	Verbal Visual (circling, filling in blanks) Written
Students fill in the blanks of sentences as teacher is explaining		Written

Activity	5E – Engage, Explore, Explain, Elaborate, Evaluate PRO – Principles, Reasoning, Outcome	Modes of representation
(Question 3). Students deduce the formula (F=ma) and identify the proportional relationship among the factors	Students indicate the key principles (P) in Newton's Second Law of Motion	
Task 5- students apply their understanding to given scenarios		Written
Task 6- Students should then refine their explanations using Newton's Third Law, Second Law, and the scientific terms with the aid of appropriate diagram in the last column	Practise problems involving mathematical formula Students refine their explanation (P & R) using both words and diagram	Written Visual (diagram)
Task 7 Task 7- as a class, students and teacher jointly craft the PRO for question 1 (refer to homework) Homework: Students to build their explanations of the scenarios with the PRO structure as a scaffold.	Teacher explicitly introduces the PRO structure to students before continuing to Task 7. Teacher should go through at least 1 question in class Students to craft explanations	Written Visual (given diagrams)
Lesson 3 (60 min)	using the PRO structure	
Task 1- Students to assess their peers' answers according to given rubric/instructions.	Students evaluate conceptual understanding through peer assessment	Written Visual (checklist)
Task 2- Students to attempt selected questions from the workbook	Students to write explanations without the PRO scaffold	Written

Classwork 1

Lesson 1

Complete the table below

	Pr	re-Demonstration/Activity Questions
Demonstrations/	What do you predict will happen?	What makes you think so?
Activities		
Scenario 1a		
Two skaters		
were pushing		
against each		
other		
Scenario 1b		
A skater was		
pushing the		
other skater		
from behind		
Scenario 2		
A pair of		
connected		
spring balances		
was pulled at		
one end.		
Scenario 3		
A skater was		
pushing against		
the wall.		

	Post-Demonstration/Activity Questions			
Demonstrations/ Activities	Draw a labelled diagram to illustrate your observation.	Using your diagram, explain your observation.	Refine/revise/correct your explanation, including a refined diagram.	
Scenario 1a Two skaters were pushing against each other				
Scenario 1b A skater was pushing the other skater from behind				
Scenario 2 A pair of connected spring balances was pulled at one end.				
Scenario 3 A skater was pushing against the wall.				

Classwork 2

Lesson 2

1. Complete the table below

		Pre-Demonstration/Activity Questions
Demonstrations/ Activities	What do you predict will happen?	What makes you think so?
Scenario 1a A student pushes a lighter skater		This could include sources of their experiences or their own explanations
Scenario 1b A student pushes a heavier skater		
Scenario 2a A skater pushes against the wall with less effort.		
Scenario 2b A skater pushes against the wall with more effort.		

		Post-D	emonstration/Activity Questions
Demonstrations/ Activities	Draw a labelled diagram to illustrate your observation.	Using your diagram, explain your observation.	Refine/revise/correct your explanation, including a refined diagram.
Scenario 1a A student pushes a lighter skater	This could include arrows that represent motions (may not be force) or just skaters that are moving.		
Scenario 1b A student pushes a heavier skater			
Scenario 2a A skater pushes against the wall with less effort.			
Scenario 2b A skater pushes against the wall with more effort.			

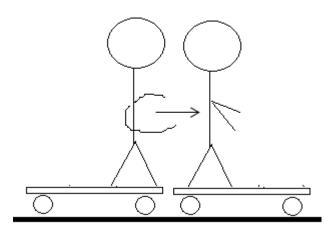
2. Compare the 'a' and 'b' parts of both scenarios demonstrated. Circle the correct motion (Faster / Slower) of each skater.

	ʻa'	'b'
Scenario 1 - A student pushes	Scenario 1a	Scenario 1b
a lighter skater and a heavier	Similar force	Similar force
skater	Lower mass skater	Higher mass skater
	(Faster / Slower)	(Faster / Slower)
Scenario 2 - A skater pushes	Scenario 2a	Scenario 2b
against the wall with less	Same mass	Same mass
effort and more effort	Lower force	Higher force
	(Faster / Slower)	(Faster / Slower)

3. Select one word/phrase from each column A to K to construct a proper sentence. Then, re-write your sentences in the given table.

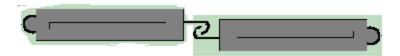
A	В	С	D	Е	F	G	Н	I	J	K
From scenario 1a and 1b,	if	*force *acceleration *mass	*remains *continues *persists	*the same *constant *fixed	,	*acceleration *force	is	*directly *inversely *linearly	proportional to	*force *mass
From scenario 2a and 2b,	if	*force *acceleration *mass	*remains *continues *persists	*the same *constant *fixed	,	*acceleration *mass	is	*directly *inversely *linearly	proportional to	*force *mass

From scenario 1a and 1b,	Mathematical relationship: is proportional to
From scenario 2a and 2b,	Mathematical relationship: is proportional to
Combining both scenarios,	The formula is

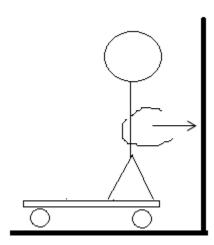

4. A student pushes a skater of mass 50 kg with a force of 25 N. Calculate the acceleration of the skater.

5. A skater of mass 60 kg pushes the wall with a force of x N and moves away from the wall with an acceleration of 2 ms⁻². Calculate x.

Homework

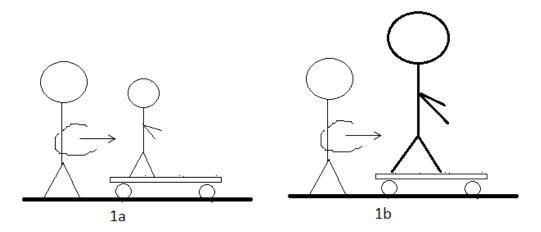

Lesson 1

1. In Scenario 1b from Lesson 1, why did both skaters move away from each other when only a skater was pushing?

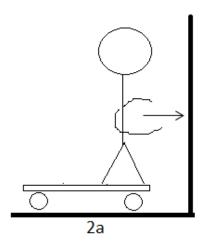

Principles (What do you know? What laws/principles are involved? What's the underlying concept?)	When the skater was pushing,
Reasoning (What follows from the principles?)	Therefore,
Outcome (What is your conclusion?)	Thus,

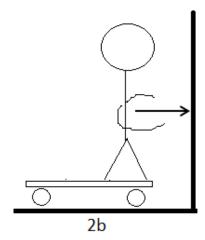
2. In Scenario 2 from Lesson 1, why did the spring balances show similar readings?

Principles (What do you know? What laws/principles are involved? What's the underlying concept?)	When one of the spring balances was, a force According to Newton's, a force
Reasoning (What follows from the principles?)	Therefore,
Outcome (What is your conclusion?)	Thus,


3. In Scenario 3 from Lesson 1, why did the student move away from the wall?

Principles (What do you know? What laws/principles are involved? What's the underlying concept?)	When the skater was pushing, a force According to Newton's, a force
Reasoning (What follows from the principles?)	Therefore,
Outcome (What is your conclusion?)	Thus,


Lesson 2


4. Compare Scenario 1a (lower mass) and 1b (higher mass) from Lesson 2: Why did the lighter skater move faster than the heavier skater?

Principles (What do you know? What laws/principles	In Scenario 1a and 1b, similar forces were
are involved? What's the underlying concept?)	According to Newton's, when force, mass
Reasoning (What follows from the principles?)	Therefore, when the forces exerted on both skaters, mass
Outcome (What is your conclusion?)	Thus,

5. Compare Scenario 2a (lower force) and 2b (higher force) from Lesson 2: Why did the skater move faster when he pushes against the wall with heavier effort?

Principles (What do you know? What laws/principles are involved? What's the underlying concept d?)	When the skater was
	when mass, force
Reasoning (What follows from the principles?)	Therefore, when the skater has the same,
Outcome (What is your conclusion?)	Thus,

Homework Rubric for Peer Check

Lesson 1

In Scenario 1b, why did both skaters move away from each other when only a skater was pushing?

Criter	a	(Yes)	$\sqrt{}$
-	Force is exerted on the other skater		
-	*Newton's Third Law		
-	Reaction force with the same magnitude will be reflected to the skater		
	who pushes		
-	The skater who pushes moves away		
-	Thus, both skaters move away when only a skater was pushing (conclude		
	answer to the question)		

^{*}No tick if Newton's Third Law alone was mentioned/defined without applying it to the question/situation.

In Scenario 2, why did the spring balances show similar readings?

Criteria	
- Force is exerted on the other spring balance	
- *Newton's Third Law	
- Reaction force with the same magnitude will be reflected on the pulled	
spring balance	
- Pulled spring balance shown reading	
- Thus, both spring balances show similar readings (conclude answer to the	
question)	

^{*}No tick if Newton's Third Law alone was mentioned/defined without applying it to the question/situation.

In Scenario 3, why did the skater move away from the wall?

Criteria	
- Force exerted on the wall	
- *Newton's Third Law	
- Reaction force with the same magnitude will be reflected on the ska	ter
- Skater moves	
- Thus, the skater moved away from the wall (conclude answer to the	
question)	

^{*}No tick if Newton's Third Law alone was mentioned/defined without applying it to the question/situation.

Lesson 2

Compare Scenario 1a and 1b, why did the light weight skater move faster than the heavy weight skater?

Criteria	
- Similar forces were exerted on both skaters	
- *Newton's Second Law	
- When force remains constant, mass of the object is inversely proportional	
to its acceleration. (define Newton's Second Law according to given	
situation)	
- When the forces exerted on both skaters are similar, skater with higher	
mass would travel with lower acceleration. (apply Newton's Second Law to	
the situation)	
- Thus, the lighter skater moves faster than the heavier skater (conclude	
answer to the question)	

^{*}No tick if Newton's Second Law mentioned has no direct relevance to the question/situation. (E.g. when mass remains constant/ $F = ma \dots etc.$)

Compare Scenario 2a and 2b, why did the skater move faster when he pushes against the wall with heavier effort?

Criteri	a	(Yes) √
-	*Newton's Third Law	
-	a reaction force with the same magnitude is reflected on the skater	
-	**Newton's Second Law	
-	When mass remains constant, force exerted on the object is directly	
	proportional to its acceleration (define Newton's Second Law according to	
	given situation)	
-	When the skater has the same mass, higher force exerted on the wall would	
	results in higher acceleration. (apply Newton's Second Law to the	
	situation)	
-	Thus, the skater moves faster when he pushes against the wall with heavier	
	effort. (conclude answer to the question)	

^{*} No tick if Newton's Third Law alone was mentioned/defined without applying it to the question/situation

^{**}No tick if Newton's Second Law mentioned has no direct relevance to the question/situation. (E.g. when force remains $constant/F = ma \dots etc.$)

Homework Answers

Lesson 1

In Scenario 1b, why did both skaters move away from each other when only a skater was pushing?

When the skater was pushing the other skater, a force is exerted on the other skater. According to Newton's Third Law of Motion, a reaction force with the same magnitude will be reflected on the skater who pushed. Therefore, the skater who pushes, moves backwards. Thus, both skaters move away from each other when only a skater was pushing.

In Scenario 2, why did the spring balances show similar readings?

When one of the spring balances was pulled, a force is exerted on the other spring balance. According to Newton's Third Law of Motion, a reaction force with the same magnitude will be reflected on the pulled spring balance. Therefore, the pulled spring balance showed a similar reading to the other spring balance. Thus, both spring balances show similar readings.

In Scenario 3, why did the skater move away from the wall?

When the skater was pushing against the wall, a force is exerted on the wall. According to Newton's Third Law of Motion, a reaction force with the same magnitude will be reflected on the skater. Therefore, the skater moves in the direction of reaction force. Thus, the skater moved away from the wall.

Lesson 2

Compare Scenario 1a and 1b: Why did the lighter skater move faster than the heavier skater?

In Scenario 1a and 1b, similar forces were exerted on both skaters. According to Newton's Second Law, when force remains constant, mass of the object is inversely proportional to its acceleration. Therefore, when the forces exerted on both skaters are similar, skater with higher mass would travel with lower acceleration. Thus, the lighter skater moves faster than the heavier skater.

Compare Scenario 2a and 2b: Why did the skater move faster when he pushes against the wall with heavier effort?

When the skater was pushing against the wall, according to Newton's Third Law, a reaction force with the same magnitude is reflected on the skater. At the same time, according to

Newton's Second Law, when mass remains constant, force exerted on the object is directly proportional to its acceleration. Therefore, when the skater has the same mass, higher force exerted on the wall results in higher acceleration. Thus, the skater moves faster when he pushes against the wall with heavier effort.